Canine Canf4 Protein (His Tag)

Catalog Number: 70261-D08H

General Information

Gene Name Synonym:

Canf4

Protein Construction:

A DNA sequence encoding the canine Canf4 (NP_001177855.1) (Met1-Glu174) was expressed with a polyhistidine tag at the C-terminus.

Source:

Expression Host: HEK293 Cells

QC Testing

Purity: > 90 % as determined by SDS-PAGE.

Canine

Endotoxin:

< 1.0 EU per μ g protein as determined by the LAL method.

Stability:

Samples are stable for up to twelve months from date of receipt $% 10^{\circ}$ at -70 $^{\circ}\mathrm{C}$

Predicted N terminal: Gln 17

Molecular Mass:

The recombinant canine Canf4 consists of 169 amino acids and predicts a molecular mass of 19.1 kDa.

Formulation:

Lyophilized from sterile 50 mM Tris, 100 mM NaCl, 0.02 % TWeen 80, pH 8.0.

Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any concerns or special requirements.

Usage Guide

Storage:

Store it under sterile conditions at -20 $^\circ\!C$ to -80 $^\circ\!C$ upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.

Avoid repeated freeze-thaw cycles.

Reconstitution:

Detailed reconstitution instructions are sent along with the products.

SDS-PAGE:

Protein Description

Dog dander is an important cause of respiratory allergy but its content of allergenic components is still incompletely known. The size and the amino acid composition of the ligand-binding pocket indicate that Can f 4 is capable of binding only relatively small hydrophobic molecules which are different from those that Can f 2 is able to bind. The crystal structure of Can f 4 contained both monomeric and dimeric forms of the allergen, suggesting that Can f 4 is able to form transient (weak) dimers. The existence of transient dimers in solution was confirmed by use of native mass spectrometry. The dimeric structure of Can f 4 is formed when the ends of four β -strands are packed against the same strands from the second monomer.

Manufactured By Sino Biological Inc., FOR RESEARCH USE ONLY. NOT FOR USE IN HUMANS. For US Customer: Fax: 267-657-0217 • Tel: 215-583-7898 Global Customer: Fax:+86-10-5862-8288 • Tel:+86-400-890-9989 • <u>http://www.sinobiological.com</u>