Mouse Monoclonal Antibody to Aequorea victoria GFP

Catalog Number: 13105-MM05

General Information				
Immunogen:	Recombinant Aequorea victoria GFP protein (Catalog#13105-S07E)			
Clone ID:	05			
lg Type:	Mouse IgG1			
Applications:	ELISA, IP, ICC/IF, IF			
Specificity:	Aequorea victoria GFP			
Formulation:	$0.2\ \mu m$ filtered solution in PBS , pH7.4			
Storage:	< -20° C			

Preparation

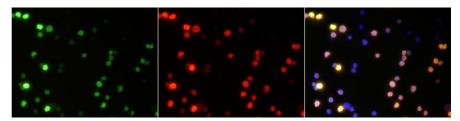
This antibody was produced from a hybridoma resulting from the fusion of a mouse myeloma with B cells obtained from a mouse immunized with purified, recombinant Aequorea victoria GFP (Catalog#13105-S07E; AAB65663; Ser 2-Lys 238). The IgG fraction of the cell culture supernatant was purified by Protein A affinity chromatography.

Storage

This antibody can be stored at $2^{\circ}C-8^{\circ}C$ for one month without detectable loss of activity. Antibody products are stable for twelve months from date of receipt when stored at $-20^{\circ}C$ to $-80^{\circ}C$. **Preservative-Free.**

Sodium azide is recommended to avoid contamination (final concentration 0.05%-0.1%). It is toxic to cells and should be disposed of properly. **Avoid repeated freeze-thaw cycles.**

Applications


ELISA – This antibody can be used at 0.5-1 μ g/mL with the appropriate secondary reagents to detect Aequorea victoria GFP. The detection limit for Aequorea victoria GFP is approximately 0.16 ng/well.

Immunoprecipitation -

IP: 1-4 µg/mg of lysate

KDa	A	В		Lanes	Α	В
100— 70— 55—			← IgG heavy chain	Sample	GFP transfected E.coil lysate	GFP transfected 293 Cells lysate
40 — 35 —		igo navy cham		Sample quantity	0.5 mg	
35 <u></u>			← GFP	IP antibody quantity	2 µg	
23				Protein G agarose	15 µl of 50% Protein G Agarose	
				Gel	13% SDS-PAGE reducing gel	
15—			Primary antibody GFP antibody at 10 µg/ml [Cat# 13105-R028]			ml [Cat# 13105-R028]
				Secondary antibody Dylight 800-labeled antibody to rabbit IgG (H 1:5000 dilution.		

ICC/IF: 10-25 µg/mL

Immunofluorescence staining of GFP protein in CHO cells, transfected with GFP. Cells (left: GFP, middle: antibody, right: merge) were fixed with 4% PFA, blocked with 10% serum, and incubated with Mouse anti-GFP monoclonal antibody (15 μ g/ml) at 37°C 1 hour. Then cells were stained with the Alexa Fluor® 594-conjugated Goat Anti-mouse IgG secondary antibody (red) and counterstained with DAPI (blue).

Specificity

Aequorea victoria GFP *No cross-reactivity* in ELISA with E.coli cell lysate Catalog Number: 13105-MM05

Background

The green fluorescent protein (GFP) is a protein that exhibit bright green fluorescence when exposed to blue light. The protein is in the shape of a cylinder, comprising 11 strands of beta-sheet with an alpha-helix inside and short helical segments on the ends of the cylinder. Inward-facing sidechains of the barrel induce specific cyclization reactions in the tripeptide Ser65-Tyr66-Gly67 that lead to chromophore formation. Its amazing ability to generate a highly visible, efficiently emitting internal fluorophore is both intrinsically fascinating and tremendously valuable. The green-fluorescent protein (GFP) of the jellyfish Aequorea victoria has always been used as a universal reporter in a broad range of heterologous living cells and organisms. GFP has become well established as a marker of gene expression and protein targeting in intact cells and organisms.

Reference

- 1. Nagai, M. et al., 1985, Gene. 36:183-188.
- 2. Jacobs, P. et al., 1985, DNA. 4:139-146.
- 3. Geiger, M. et al., 1989, Blood. 74 (2): 722-728.
- 4. Ploug, M. et al., 2002, Biochem. Soc. Trans. 30 (2): 177-183.
- 5. Duffy, M.J., 2002, Biochem. Soc. Trans. 30: 207-210.
- 6. Alfano, M. et al., 2004, J. Leukoc. Biol. 74 (5): 750-756.