

Bioactive Molecules, Building Blocks, Intermediates

www.ChemScene.com

Product Name:	(E)-Cardamonin		
Cat. No.:	CS-6403		
CAS No.:	19309-14-9		
Molecular Formula:	C16H14O4		
Molecular Weight:	270.28		
Target:	Apoptosis; TRP Channel		
Pathway:	Apoptosis; Membrane Transporter/Ion Channel; Neuronal Signaling		
Solubility:	DMSO : ≥ 28 mg/mL (103.60 mM); H2O : < 0.1 mg/mL (insoluble)		

Data Sheet

	OH		囙	\sim
но		`0´	Í	

BIOLOGICAL ACTIVITY:

(E)-Cardamonin ((E)-Cardamomin) is a novel antagonist of **hTRPA1** cation channel with an **IC**₅₀ of 454 nM. IC50 & Target: IC50: 454 nM (hTRPA1 cation channel)^[1] **In Vitro**: (E)-Cardamonin ((E)-Cardamomin) selectively blocksTRPA1 activation (IC₅₀=454 nM) while does not interact with TRPV1 nor TRPV4 channel. Docking analysis of cardamonin demonstrates a compatible interaction with A-967079-binding site of TRPA1. (E)-Cardamonin ((E)-Cardamomin) does not significantly reduce HEK293 cell viability, nor does it impair cardiomyocyte constriction^[1]. (E)-Cardamonin ((E)-Cardamomin) suppresses the expression of Tgase-2, cyclooxygenase-2 (COX-2), and p65 (nuclear factor-κB) in a concentration-dependent manner, and restores the expression of IκB in MG63 and Raw264.7 cells^[2]. **In Vivo**: (E)-Cardamonin ((E)-Cardamomin) (3-30 mg/kg, orally administered) significantly inhibits PBQ-induced writhing. CDN also produces a significant, dose-dependent increase in the withdrawal response latencies in carrageenan-induced hyperalgesia^[2].

PROTOCOL (Extracted from published papers and Only for reference)

Cell Assay: ^[1]HEK293 cells are treated with (E)-Cardamonin ((E)-Cardamomin) (0-90 μ M). The cells treated in the absence of the test compound are the negative control. After incubated for 24 h, Cell Titer-Glo reagent is added to the cells and Luminescence is acquired on the plate reader^[1]. **Animal Administration:** Cardamonin is prepared in 80% saline, 10% ethanol and 10% Tween 80.^{[1][2]}Rats: The rats are divided into groups of six according to their nociceptive pressure thresholds, after which carrageenan (0.1 mL, 1%) is injected into the plantar surface of the left hind paw. The rats received vehicle or (E)-Cardamonin ((E)-Cardamomin) (3-30 mg/kg) or indomethacin (3 mg/kg) orally 2 h after carrageenan injection and are evaluated for paw hyperalgesia 0, 1 and 2 h after administration of compounds. Indomethacin is used as a positive control^[2].

Mice: Acute pain is induced by an intraperitoneal injection of 0.2 mL of 0.02% PBQ 54 min after oral administration of (E)-Cardamonin ((E)-Cardamomin). Six minutes after the PBQ injection, the total number of writhes is counted for 6 min. The control animals received an appropriate volume of dosing vehicle (80% saline, 10% ethanol and 10% Tween 80). Indomethacin is used as a positive control^[2].

References:

[1]. Wang S, et al. Cardamonin, a Novel Antagonist of hTRPA1 Cation Channel, Reveals Therapeutic Mechanism of Pathological Pain. Molecules. 2016 Aug 29;21(9). pii: E1145.

[2]. Park MK, et al. Novel anti-nociceptive effects of cardamonin via blocking expression of cyclooxygenase-2 andtransglutaminase-2. Pharmacol Biochem Behav. 2014 Mar;118:10-5.

CAIndexNames:

2-Propen-1-one, 1-(2,4-dihydroxy-6-methoxyphenyl)-3-phenyl-, (2E)-

SMILES:

O=C(C1=C(OC)C=C(O)C=C1O)/C=C/C2=CC=CC=C2.[(E)]

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 732-484-9848 Fax: 888-484-5008 E-mail: sales@ChemScene.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA