

Bioactive Molecules, Building Blocks, Intermediates

www.ChemScene.com

Product Name:	N-Desmethylclozapine
Cat. No.:	CS-6103
CAS No.:	6104-71-8
Molecular Formula:	C17H17CIN4
Molecular Weight:	312.80
Target:	Drug Metabolite; mAChR; Opioid Receptor; Virus Protease Cl
Pathway:	Anti-infection; GPCR/G Protein; Metabolic Enzyme/Protease; Neuronal Signaling
Solubility:	DMSO : ≥ 50 mg/mL (159.85 mM)

Data Sheet

BIOLOGICAL ACTIVITY:

N-Desmethylclozapine is a major active metabolite of the atypical antipsychotic drug Clozapine. N-Desmethylclozapine is a potent, allosteric and partial **M1 receptors** agonist (EC_{50} =115 nM) and is able to potentiate hippocampal N-methyl-d-aspartate (NMDA) receptor currents through M1 receptor activation. N-Desmethylclozapine is also a δ -opioid agonist^{[1][2]}. IC50 & Target: EC50: 115 nM (M1 receptors)^[1]

δ-opioid^[2] In Vitro: The brain penetrant metabolite N-desmethylclozapine preferentially bound to M1 muscarinic receptors with an IC ₅₀ of 55 nM and was a more potent partial agonist (EC₅₀, 115 nM and 50% of acetylcholine response) at this receptor than clozapine^[1]

N-desmethylclozapine exhibits slight agonistic effects on the M1 mAChR, and agonistic properties at the 5-HT1A receptor in the cerebral cortex and hippocampus. This compound also behaves as an agonist at the δ -opioid receptor in the cerebral cortex and striatum^[2].

N-desmethylclozapine (3 μM) greatly decreases the outward current in excitatory neurons, but not in inhibitory neurons. In excitatory neurons, N-desmethylclozapine alone is more effective than either clozapine alone or the combination of clozapine and N-desmethylclozapine. The effect of N-desmethylclozapine in excitatory neurons is significantly suppressed by 0.1 μM pirenzepine and 1 μM atropine. N-desmethylclozapine, but not clozapine, suppressed K⁺ channels via M1 receptors in excitatory cells^[3]. N-desmethylclozapine leads to a decrease in TxB2 levels under unstimulated conditions as well as under TSST-1 stimulation. Clozapine, N-desmethylclozapine and CPZ possibly act on neurotransmitter systems via modulation of TxA2 or TxB2 production^[5]. The IC₅₀s of N-desmethylclozapine, fluoxetine hydrochloride, and salmeterol xinafoate in Huh-7 cells infected with DENV-2 are 1 μM, 0.38 μM, and 0.67 μM, respectively. The levels of NS3 are reduced in cells treated with all three inhibitors compared to DMSO treatment, suggesting that the inhibitors act at a stage prior to viral protein translation. N-Desmethylclozapine-treated cells show a >75% reduction in negative-strand RNA levels^[6]. **In Vivo**: N-desmethylclozapine in rat and human at M2 and M4 mAChRs underlying presynaptic modulation of GABA and glutamate release, respectively. In particular, N-desmethylclozapine maybe a M2 mAChR antagonist in the rat but has no activity at this receptor in human neocortex. However, N-desmethylclozapine has an agonistic effect at M4 mAChR in the human but no such effect in the rat neocortex^[4].

References:

[1]. Li Z, et al. N-desmethylclozapine, a major metabolite of clozapine, increases cortical acetylcholine and dopamine release in vivo via stimulation of M1 muscarinic receptors. Neuropsychopharmacology. 2005 Nov;30(11):1986-95.

[2]. Odagaki Y, et al. Comparative analysis of pharmacological properties of xanomeline and N-desmethylclozapine in rat brain membranes. J Psychopharmacol. 2016 Sep;30(9):896-912 [3]. Sugawara Y, et al. Electrophysiological evidence showing muscarinic agonist-antagonist activities of N-desmethylclozapine using hippocampal excitatory and inhibitory neurons. Brain Res. 2016 Jul 1;1642:255-62

[4]. Gigout S, et al. Different pharmacology of N-desmethylclozapine at human and rat M2 and M 4 mAChRs in neocortex. Naunyn Schmiedebergs Arch Pharmacol. 2015 May;388(5):487-96

[5]. Himmerich H, et al. Impact of clozapine, N-desmethylclozapine and chlorpromazine on thromboxane production in vitro. Med Chem. 2012 Nov;8(6):1032-8.

[6]. Medigeshi GR, et al. N-Desmethylclozapine, Fluoxetine and Salmeterol inhibit post-entry stages of dengue virus life-cycle. Antimicrob Agents Chemother. 2016 Aug 29.

CAIndexNames:

5H-Dibenzo[b,e][1,4]diazepine, 8-chloro-11-(1-piperazinyl)-

SMILES:

CIC1=CC=C2C(N=C(N3CCNCC3)C4=CC=CC=C4N2)=C1

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 732-484-9848 Fax: 888-484-5008 E-mail: sales@ChemScene.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA