

Bioactive Molecules, Building Blocks, Intermediates

www.ChemScene.com

Data Sheet

Product Name:	N-(p-amylcinnamoyl) Anthranilic Acid
Cat. No.:	CS-0067650
CAS No.:	110683-10-8
Molecular Formula:	C21H23NO3
Molecular Weight:	337.41
Target:	Phospholipase; TRP Channel
Pathway:	Membrane Transporter/Ion Channel; Metabolic Enzyme/Protease; Neuronal Signaling
Solubility:	H2O : < 0.1 mg/mL (insoluble); DMSO : \geq 125 mg/mL (370.47 mM)

BIOLOGICAL ACTIVITY:

N-(p-amylcinnamoyl) Anthranilic Acid (ACA) is a broad spectrum **Phospholipase A₂ (PLA₂)** inhibitor and **TRP channel** blocker^{[1][2]}. N-(p-amylcinnamoyl) Anthranilic Acid (ACA) is also an effective reversible inhibitor of **calcium-activated chloride channels**, has potential to treat arrhythmia^[3]. IC50 & Target: PLA₂^{[1][2]}.

TRP channel^{[1][2]}. Calcium-activated chloride channels^[3]. **In Vitro:** N-(p-amylcinnamoyl) Anthranilic Acid (ACA; 20 μ M) completely blocks ADPR-induced whole-cell currents and H₂O₂-induced Ca²⁺ signals (IC₅₀=1.7 μ M) in HEK293cells transfected with human TRPM2^[1].

N-(p-amylcinnamoyl) Anthranilic Acid (ACA; 20 µM) also blocks currents through human TRPM8 and TRPC6 expressed in HEK293 cells [1].

N-(p-amylcinnamoyl) Anthranilic Acid (ACA) modulates the activity of different TRP channels independent of PLA2₂ inhibition^[1].

References:

[1]. Kraft R, et al. Inhibition of TRPM2 cation channels by N-(p-amylcinnamoyl)anthranilic acid. Br J Pharmacol. 2006 Jun;148(3):264-73.

[2]. Harteneck C, et al. N-(p-amylcinnamoyl)anthranilic acid (ACA): a phospholipase A(2) inhibitor and TRP channel blocker. Cardiovasc Drug Rev. 2007 Spring;25(1):61-75.

[3]. Gwanyanya A, et al. Inhibition of the calcium-activated chloride current in cardiac ventricular myocytes by N-(p-amylcinnamoyl)anthranilic acid (ACA). Biochem Biophys Res Commun. 2010 Nov 19;402(3):531-6.

CAIndexNames:

Benzoic acid, 2-[[1-oxo-3-(4-pentylphenyl)-2-propen-1-yl]amino]-

SMILES:

 $\mathsf{CCCCCC1} = \mathsf{CC} = \mathsf{C}(\mathsf{C} = \mathsf{C1}) / \mathsf{C} = \mathsf{C} / \mathsf{C}(\mathsf{NC2} = \mathsf{CC} = \mathsf{C2C}(\mathsf{O}) = \mathsf{O}) = \mathsf{O}$

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 732-484-9848 Fax: 888-484-5008 E-mail: sales@ChemScene.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA