

NMNAT1 Blocking Peptide (C-Term) Synthetic peptide

Catalog # BP21921b

Specification

NMNAT1 Blocking Peptide (C-Term) - Product Information

Primary Accession	<u> 09HAN9</u>
Other Accession	<u>Q0VD50</u>

NMNAT1 Blocking Peptide (C-Term) - Additional Information

Gene ID 64802

Other Names

Nicotinamide mononucleotide adenylyltransferase 1, NMN adenylyltransferase 1, 2.7.7.1, Nicotinate-nucleotide adenylyltransferase 1, NaMN adenylyltransferase 1, 2.7.7.18, NMNAT1, NMNAT

Target/Specificity

The synthetic peptide sequence is selected from aa 191-201 of HUMAN NMNAT1

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

NMNAT1 Blocking Peptide (C-Term) - Protein Information

Name NMNAT1

Synonyms NMNAT

NMNAT1 Blocking Peptide (C-Term) -Background

Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP. Can also use the deamidated form: nicotinic acid mononucleotide (NaMN) as substrate with the same efficiency. Can use triazofurin monophosphate (TrMP) as substrate. Also catalyzes the reverse reaction, i.e. the pyrophosphorolytic cleavage of NAD(+). For the pyrophosphorolytic activity, prefers NAD(+) and NAAD as substrates and degrades NADH, nicotinic acid adenine dinucleotide phosphate (NHD) and nicotinamide guanine dinucleotide (NGD) less effectively. Fails to cleave phosphorylated dinucleotides NADP(+), NADPH and NAADP(+). Protects against axonal degeneration following mechanical or toxic insults.

NMNAT1 Blocking Peptide (C-Term) -References

Schweiger M., et al. FEBS Lett. 492:95-100(2001). Emanuelli M., et al. J. Biol. Chem. 276:406-412(2001). Fernando F.S., et al. Gene 284:23-29(2002). Ota T., et al. Nat. Genet. 36:40-45(2004). Gregory S.G., et al. Nature 441:315-321(2006).

Function

Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP (PubMed: 17402747). Can also use the deamidated form: nicotinic acid mononucleotide (NaMN) as substrate with the same efficiency (PubMed:17402747). Can use triazofurin monophosphate (TrMP) as substrate (PubMed:17402747). Also catalyzes the reverse reaction, i.e. the pyrophosphorolytic cleavage of NAD(+) (PubMed:17402747). For the pyrophosphorolytic activity, prefers NAD(+) and NaAD as substrates and degrades NADH, nicotinic acid adenine dinucleotide phosphate (NHD) and nicotinamide guanine dinucleotide (NGD) less effectively (PubMed:17402747). Involved in the synthesis of ATP in the nucleus, together with PARP1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed: 27257257). Fails to cleave phosphorylated dinucleotides NADP(+), NADPH and NaADP(+) (PubMed:17402747). Protects against axonal degeneration following mechanical or toxic insults (By similarity).

Cellular Location Nucleus

Tissue Location

Widely expressed with highest levels in skeletal muscle, heart and kidney. Also expressed in the liver pancreas and placenta. Widely expressed throughout the brain

NMNAT1 Blocking Peptide (C-Term) -Protocols

Provided below are standard protocols that you may find useful for product applications.

Blocking Peptides