

HLA-DP (MHC II) Antibody - With BSA and Azide

Mouse Monoclonal Antibody [Clone SPM421]
Catalog # AH11421

Specification

HLA-DP (MHC II) Antibody - With BSA and Azide - Product Information

Application ,2,3,4,
Primary Accession Other Accession 3115, 347270
Reactivity Human
Host Mouse
Clonality Monoclonal
Isotype Mouse / IgG2b,

kappa

Calculated MW 33-35kDa KDa

HLA-DP (MHC II) Antibody - With BSA and Azide - Additional Information

Gene ID 3115

Other Names

HLA class II histocompatibility antigen, DP beta 1 chain, HLA class II histocompatibility antigen, DP(W4) beta chain, MHC class II antigen DPB1, HLA-DPB1, HLA-DP1B

Storage

Store at 2 to 8°C.Antibody is stable for 24 months.

Precautions

HLA-DP (MHC II) Antibody - With BSA and Azide is for research use only and not for use in diagnostic or therapeutic procedures.

HLA-DP (MHC II) Antibody - With BSA and Azide - Protein Information

Name HLA-DPB1

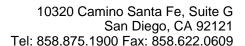
Synonyms HLA-DP1B

Function

Binds peptides derived from antigens that access the endocytic route of antigen presenting cells (APC) and presents them on the cell surface for recognition by the CD4 T-cells. The peptide binding cleft

HLA-DP (MHC II) Antibody - With BSA and Azide - Background

HLA-DP (MHC II) Antibody - With BSA and Azide - References


Babusikova O; Ujhazy P; Hrivnakova A; Chorvath B; Polakova K. Studies on the distribution of the antigens detected by some newly prepared monoclonal antibodies in normal hemopoietic and leukemic cells. Neoplasma, 1985, 32(6):657-62. | Polakova K; Chorvath B; Sedlak J; Duraj J; Matoska J; Karpatova M. Monoclonal antibodies against MHC class II antigens elicited with a human non-T, non-B acute lymphoblastic leukemia cell line. Neoplasma, 1985, 32(6):641-8. | Neoplasma 34(4), 417- 425, (1987). | Horejsi V, et. al. Tissue Antigens, 1988, 32(1):6-11. |

accommodates peptides of 10-30 residues. The peptides presented by MHC class II molecules are generated mostly by degradation of proteins that access the endocytic route, where they are processed by lysosomal proteases and other hydrolases. Exogenous antigens that have been endocytosed by the APC are thus readily available for presentation via MHC II molecules, and for this reason this antigen presentation pathway is usually referred to as exogenous. As membrane proteins on their way to degradation in lysosomes as part of their normal turn-over are also contained in the endosomal/lysosomal compartments, exogenous antigens must compete with those derived from endogenous components. Autophagy is also a source of endogenous peptides, autophagosomes constitutively fuse with MHC class II loading compartments. In addition to APCs, other cells of the gastrointestinal tract, such as epithelial cells, express MHC class II molecules and CD74 and act as APCs, which is an unusual trait of the GI tract. To produce a MHC class Il molecule that presents an antigen, three MHC class II molecules (heterodimers of an alpha and a beta chain) associate with a CD74 trimer in the ER to form a heterononamer. Soon after the entry of this complex into the endosomal/lysosomal system where antigen processing occurs, CD74 undergoes a sequential degradation by various proteases, including CTSS and CTSL, leaving a small fragment termed CLIP (class-II-associated invariant chain peptide). The removal of CLIP is facilitated by HLA-DM via direct binding to the alpha-beta-CLIP complex so that CLIP is released. HLA-DM stabilizes MHC class II molecules until primary high affinity antigenic peptides are bound. The MHC II molecule bound to a peptide is then transported to the cell membrane surface. In B-cells, the interaction between HLA-DM and MHC class Il molecules is regulated by HLA-DO. Primary dendritic cells (DCs) also to express HLA-DO. Lysosomal microenvironment has been implicated in the regulation of antigen loading into MHC II molecules, increased acidification produces increased proteolysis and efficient peptide loading.

Cellular Location

Cell membrane; Single-pass type I membrane protein. Endoplasmic reticulum

membrane; Single-pass type I membrane protein. Golgi apparatus, trans-Golgi network membrane; Single-pass type I membrane protein. Endosome membrane; Single-pass type I membrane protein. Lysosome membrane; Single-pass type I membrane protein Note=The MHC class II complex transits through a number of intracellular compartments in the endocytic pathway until it reaches the cell membrane for antigen presentation

HLA-DP (MHC II) Antibody - With BSA and Azide - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- <u>Immunofluorescence</u>
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture