Product Manual

Choline Assay Kit (Fluorometric)

Catalog Number

MET- 5042 96 assays

FOR RESEARCH USE ONLY Not for use in diagnostic procedures

Introduction

Choline is a water soluble amine that is an essential nutrient. Choline and its metabolites are important to cell signaling, cholinergic neurotransmission, and cell membrane structural integrity. The metabolite is categorized as a B-complex vitamin that is synthesized by the human body, but not in sufficient quantity for proper health. It is a key precursor to the phospholipids phosphatidylcholine and sphingomyelin, which are abundant in cell membranes. During the perinatal period, choline is transferred to infants via breast milk to assist in brain and growth development. The neurotransmitter acetylcholine, which is intricate to the central and peripheral nervous systems, is produced from choline.

Choline disorders can have a profound impact on neurological function. Choline deficiency has been implicated in atherosclerosis, liver disease, cancers, as well as neurological disorders. Neural tube and memory defects in infants have been linked with low choline levels in pregnant women. More research of choline is needed to elucidate its complex roles within the body and its relation to disease states.

Cell Biolabs' Choline Assay Kit is a simple fluorometric assay that measures the amount of choline present in plasma or serum, tissue homogenates, or cell suspensions in a 96-well microtiter plate format. Each kit provides sufficient reagents to perform up to 96 assays, including blanks, standards and samples. Sample choline concentrations are determined by comparison with a known choline standard. The kit's detection sensitivity limit is approximately 75 nM choline.

Assay Principle

Cell Biolabs' Choline Assay Kit measures choline present within serum, plasma, and other tissue samples. The assay is based on an enzyme driven reaction that will detect choline via choline oxidase activity. Choline is oxidized by choline oxidase to produce hydrogen peroxide. The hydrogen peroxide is then detected with a highly specific fluorescence probe. Horseradish peroxidase catalyzes the reaction between the probe and hydrogen peroxide, which bind in a 1:1 ratio. Samples are compared to a known concentration of choline standard within the 96-well microtiter plate format. Samples and standards are incubated for 60 minutes and then read with a standard 96-well fluorometric plate reader (Figure 1).

Figure 1. Choline Assay Principle.

Related Products

- 1. MET-5043: Choline Assay (Colorimetric)
- 2. STA-384: Total Cholesterol Assay Kit (Colorimetric)
- 3. STA-390: Total Cholesterol Assay Kit (Fluorometric)
- 4. STA-391: HDL and LDL/VLDL Cholesterol Assay Kit
- 5. STA-394: HDL Cholesterol Assay Kit
- 6. STA-396: Serum Triglyceride Quantification Kit (Colorimetric)
- 7. STA-600: Phosphatidylcholine Assay Kit
- 8. STA-601: Sphingomyelin Assay Kit
- 9. STA-602: Acetylcholine Assay Kit (Fluorometric)
- 10. STA-603: Acetylcholine Assay Kit (Colorimetric)

Kit Components

- 1. <u>96-well Microtiter Plate</u> (Part No. 234501): One 96-well clear bottom black plate.
- 2. Choline Standard (Part No. 50421C): One 50 µL tube of 20 mM choline.
- 3. Assay Buffer (20X) (Part No. 50422A): One 25 mL bottle.

- 4. <u>Fluorescence Probe (50X)</u> (Part No. 260203): One 100 µL tube in DMSO.
- 5. <u>HRP</u> (Part No. 234402): One 100 µL tube of a 100 U/mL solution in glycerol.
- 6. <u>Choline Oxidase</u> (Part No. 260205): One 25 µL tube.

Materials Not Supplied

- 1. Distilled or deionized water
- 2. 1X PBS
- 3. 10 μ L to 1000 μ L adjustable single channel micropipettes with disposable tips
- 4. 50 μ L to 300 μ L adjustable multichannel micropipette with disposable tips
- 5. Multichannel micropipette reservoir
- 6. Fluorescence microplate reader capable of reading excitation in the 530-570 nm range and emission in the 590-600 nm range.
- 7. Centrifugal filters for plasma or serum samples (e.g. Millipore Amicon[®] Ultra-0.5mL, Ultracel[®] membrane filters, or Thermo Pierce Concentrators PES membrane filters)
- 8. (optional) Superoxide dismutase

Storage

Upon receipt, store the 96-well Microtiter Plate and Assay Buffer at 4°C. Store the remaining kit components at -20°C. The Fluorescence Probe is light sensitive and must be stored accordingly. Avoid multiple freeze/thaw cycles.

Preparation of Reagents

- 1X Assay Buffer: Warm the Assay Buffer (20X) to room temperature prior to using. Dilute the Assay Buffer (20X) with deionized water by diluting the 25 mL bottle of buffer with 475 mL deionized water for 500 mL total. Mix to homogeneity. Store the 1X Assay Buffer at 4°C up to six months.
- Choline Reaction Reagent: Prepare a reaction reagent to test for choline by diluting the Choline Oxidase 1:200, HRP 1:500, Fluorescence Probe 1:50 in 1X Assay Buffer. (e.g. For 50 assays, combine 12.5 μ L of Choline Oxidase, 5 μ L of HRP, 50 μ L Fluorescence Probe with 1X Assay Buffer to 2.5 mL total solution). Mix thoroughly and protect the solution from light. For best results, place the Choline Reaction Reagent on ice and use within 30 minutes of preparation. Do not store the Choline Reaction Reagent solution.

Preparation of Samples

Samples should be assayed immediately or stored at -80°C prior to performing the assay. Optimal experimental conditions for samples must be determined by the investigator. The following recommendations are only guidelines and may be altered to optimize or complement the user's experimental design. A set of serial dilutions is recommended for samples to achieve optimal assay results and minimize possible interfering compounds. Use clear supernatants in the assay. Run proper controls as necessary. Always run a standard curve with samples.

- Tissue lysates: Sonicate or homogenize tissue samples in PBS and centrifuge at 10,000 x g for 10 minutes at 4°C. The supernatant may be assayed directly or diluted as necessary in 1X Assay Buffer.
- Cell lysates: Resuspend cells at 1-2 x 10⁶ cells/mL in PBS. Homogenize or sonicate the cells on ice. Centrifuge at 14,000 rpm for 5-10 minutes to remove debris. Cell lysates may be assayed directly or diluted as necessary in 1X Assay Buffer.
- Urine: To remove insoluble particles, centrifuge at 10,000 rpm for 5 min. The supernatant may be assayed directly or diluted as necessary in 1X Assay Buffer.
- Milk: Milk samples should be homogenous and cleared by mixing 600 μ L milk with 100 μ L 6 N HCl. Centrifuge at 14,000 rpm for 5-10 minutes. Transfer 300 μ L of the supernatant into a clean tube and neutralize with NaOH. The neutralized supernatant is ready for assay.
- Serum: Collect blood without using an anticoagulant. Allow blood to clot for 30 minutes at room temperature. Centrifuge at 2000 x g and 4°C for 10 minutes. Remove the serum layer and store on ice. Take care to avoid disturbing the white buffy layer. Aliquot samples for testing and store remaining solution at -80°C. Prior to testing, it is recommended to deproteinize samples by filtering with a 3K-10K centrifugal filter (e.g. Millipore Amicon[®] Ultra-0.5mL, Ultracel[®] membrane filters, or Thermo Pierce Concentrators PES membrane filters). Perform serum dilutions in 1X Assay Buffer.
- Plasma: Collect blood with heparin or citrate and centrifuge at 1000 x g and 4°C for 10 minutes. Remove the plasma layer and store on ice. Take care to avoid disturbing the white buffy layer. Aliquot samples for testing and store remaining solution at -80°C. Prior to testing, it is recommended to deproteinize samples by filtering samples with a 3K-10K centrifugal filter (e.g. Millipore Amicon[®] Ultra-0.5mL, Ultracel[®] membrane filters, or Thermo Pierce Concentrators PES membrane filters). Perform plasma dilutions in 1X Assay Buffer.

Notes:

- 1. Samples with NADH concentrations above $10 \ \mu M$ and glutathione concentrations above $50 \ \mu M$ will oxidize the probe and could result in erroneous readings. To minimize this interference, it is recommended that superoxide dismutase (SOD) be added to the reaction at a final concentration of 40 U/mL.
- 2. Avoid samples containing DTT or β -mercaptoethanol since the fluorescence probe is not stable in the presence of thiols (above 10 μ M).

Preparation of Choline Standard Curve

1. Prepare fresh choline standards by first diluting a portion of the 20 mM Choline Standard stock solution 1:1000 in 1X Assay Buffer. (e.g. Add 10 μ L of Choline Standard stock in 990 μ L 1X Assay Buffer). Vortex thoroughly. This provides a 200 μ M concentration. Use this 200 μ M solution to prepare a series of the remaining choline standards according to Table 1 below.

	200 μM Choline	1X Assay Buffer	Resulting Choline
Tubes	Standard (µL)	(µL)	Concentration (µM)
1	50	450	20
2	250 of Tube #1	250	10
3	250 of Tube #2	250	5
4	250 of Tube #3	250	2.5
5	250 of Tube #4	250	1.25
6	250 of Tube #5	250	0.625
7	250 of Tube #6	250	0.313
8	250 of Tube #7	250	0.157
9	250 of Tube #8	250	0.078
10	0	500	0

Table 1. Preparation of Choline Standards.

Note: Do not store diluted choline standard solutions.

Choline Assay Protocol

Each choline standard and sample should be assayed in duplicate or triplicate. A freshly prepared standard curve should be used each time the assay is performed.

- 1. Add 50 μ L of the diluted choline standards or samples to the 96-well microtiter plate.
- 2. Add 50 μ L of the prepared Choline Reaction Reagent to each standard and sample wells. Mix all well contents thoroughly.
- 3. Cover the plate wells to protect the reaction from light. Incubate the plate on an orbital rotator for 60 minutes at room temperature.
- 4. Read the plate with a fluorescence microplate reader equipped for excitation in the 530-570 nm range and for emission in the 590-600 nm range.
- 5. Calculate the concentration of choline within samples by comparing the sample RFU to the choline standard curve.

Example of Results

The following figures demonstrate typical Choline Assay results. One should use the data below for reference only. This data should not be used to interpret or calculate actual sample results.

Figure 2: Choline Standard Curve.

Figure 3: Human Plasma and Serum. Human plasma and serum were deproteinized and tested according to the assay protocol. Dilutions were made with 1X Assay Buffer.

Calculation of Results

- 1. Calculate the average fluorescence values for every standard, control, and sample. Subtract the average zero standard value from itself and all standard and sample values. This is the corrected fluorescence.
- 2. Plot the corrected fluorescence for the standards against the final concentration of the choline standards from Table 1 to determine the best curve. See Figure 2 for an example standard curve.
- 3. Determine the choline concentration of the samples with the equation obtained from the linear regression analysis of the standard curve. Substitute the corrected fluorescence values for each sample. Remember to account for dilution factors.

Choline
$$(\mu M) = \left[\frac{\text{sample corrected fluorescence}}{\text{slope}} \right] x \text{ sample dilution}$$

References

- 1. Holm, P.I., et al. (2003) Clin. Chem. 49: 286-294.
- 2. Larsen, Torben, et al. (2010) J. Dairy Res. 77: 438-444.
- 3. Ohta-Fukuyama, M., et al. (1980) J. Biochem. 88: 197-203.
- 4. Woollard, D., et al. (2000) J. AOAC Int. 83: 131-138.

Warranty

These products are warranted to perform as described in their labeling and in Cell Biolabs literature when used in accordance with their instructions. THERE ARE NO WARRANTIES THAT EXTEND BEYOND THIS EXPRESSED WARRANTY AND CELL BIOLABS DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICULAR PURPOSE. CELL BIOLABS's sole obligation and purchaser's exclusive remedy for breach of this warranty shall be, at the option of CELL BIOLABS, to repair or replace the products. In no event shall CELL BIOLABS be liable for any proximate, incidental or consequential damages in connection with the products.

Contact Information

Cell Biolabs, Inc. 7758 Arjons Drive San Diego, CA 92126 Worldwide: +1 858 271-6500 USA Toll-Free: 1-888-CBL-0505 E-mail: <u>tech@cellbiolabs.com</u> www.cellbiolabs.com

 \odot 2016-2017: Cell Biolabs, Inc. - All rights reserved. No part of these works may be reproduced in any form without permissions in writing.

