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Wound healing comprises of three processes: epithelialization, connective tissue deposition, and 
contraction.  The contraction process is believed to be mediated by specialized fibroblasts called 
myofibroblasts.  Three-dimensional collagen gels have been widely used in fibroblast contraction 
studies. 

Introduction 

 
There are several different culture models to study the ability of fibroblasts to reorganize and contract 
collagen matrices in vitro.  In the floating contraction model, a freshly polymerized collagen matrix 
containing cells is released from the culture dish and allowed to float in culture medium, and 
contraction occurs in the absence of external mechanical load and without appearance of stress fibers in 
the cells.  In the attached model, a polymerized collagen matrix containing cells remains attached to the 
culture dish during contraction.  Mechanical tension develops during contraction, and cellular stress 
fibers assemble.  The two-step model combines an initial period of attached matrix contraction leading 
to mechanical loading, followed by release of the matrices, resulting in mechanical unloading and 
further contraction as mechanical stress dissipates. 
 
The signaling mechanisms used by fibroblasts to regulate collagen matrix contraction depend on 
whether the cells are mechanically loaded or unloaded at the time that contraction is initiated as well as 
on the growth factor used to initiate contraction.  For instance, stimulation of fibroblasts by 
lysophosphatidic acid (LPA) but not by platelet-derived growth factor (PDGF) causes robust force 
generation in restrained matrices, whereas LPA and PDGF stimulate floating matrix contraction 
equally well. 
 
3D collagen matrix has also been used in the studies of integrin signaling, cell apoptosis and 
cytoskeleton reorganization.  Since three-dimensional matrix adhesions differ in structure, localization, 
and function from two-dimensional adhesions; and therefore, three-dimensional cell-matrix interactions 
may be more relevant biologically. 
 
Cell Biolabs’ Collagen-based Contraction Assay Kit provides a simple system to assess cell 
contractivity in vitro and screen cell contraction mediators.  Each kit provides sufficient quantities to 
perform up to 24 assays in a 24-well plate.  The kit can also be used for culturing cells in a 3D collagen 
matrix. 
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Assay Principle 

 

1. 
Kit Components 

Collagen Solution

2. 

 (Part No. 20101): One 10 mL bottle of sterile bovine Type I Collagen at 3.0 
mg/mL 

Neutralization Solution

3. 
 (Part No. 20102): One 0.5 mL tube 

5X DMEM Medium

4. 
 (Part No. 20103): One 5 mL bottle 

5X PBS

5. 
 (Part No. 20104): One 5 mL bottle 

100X Cell Contraction Inhibitor

 

 (Part No. 20105): One 1 mL tube of 1M 2, 3-Butanedione 
Monoxime (BDM) in DMSO 

1. Cells such as fibroblasts 

Materials Not Supplied 

2. Cell culture medium 

3. 37ºC Incubator, 5% CO2 atmosphere 

4. Sterile Spatula 

5. Light microscope 

6. Ruler 
 

Store all components at 4ºC. 
Storage 
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This kit is designed for samples in a 24-well plate, and may be modified accordingly to suit other 
culture plate sizes.  Keep all solutions ON ICE the entire time. 

Preparation of Collagen Gel Working Solution 

 
Important Note: Be sure to pipet all volumes carefully with well-calibrated pipettes. Volumes of each 
reagent are critical for collagen polymerization. 

1. In a cold sterile tube, add the desired amount of Collagen Solution according to the table below.  
Next, add 5X DMEM medium or 5X PBS to the tube and mix well. 

2. Add Neutralization solution, IMMEDIATELY mix and keep the Collagen Gel Working 
Solution on ice. 

 
Reagents 6 wells 12 wells 24 wells 

Collagen Solution  2.385 mL 4.77 mL 9.54 mL 
5X Medium or PBS 615 μL 1.23 mL 2.46 mL 

Neutralization 
Solution 85 μL 170 μL 340 μL 

Total 3.085 mL 6.17 mL 12.34 mL 
 

1. Harvest cells and resuspend in desired medium at 2-5 x 106 cells/mL. 

Assay Protocol (Two-Step Collagen Contraction Model) 

2. Prepare the collagen lattice by mixing 2 parts of cell suspension and 8 parts of cold Collagen 
Gel Working Solution. 

3. Add 0.5 mL of the cell-collagen mixture per well in a 24-well plate, incubate 1 hr at 37ºC.  

4. After collagen polymerization, 1.0 mL of culture medium is added atop each collagen gel 
lattice. 

5. Cultures are incubated for two days, during which stress develops.  Before releasing the 
stressed matrix, cells may be treated with contraction mediators, such as 10 mM BDM.  To 
initiate contraction, gently release collagen gels from the sides of the culture dishes with a 
sterile spatula. 

6. The collagen gel size change (contraction index) can be measured at various times with a ruler 
or quantified with image analysis software, such as NIH Image or Image Pro Plus. 
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The following figure demonstrates typical contraction results using the Cell Contraction Assay.  One 
should use the data below for reference only.  This data should not be used to interpret actual results. 

Example of Results 
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Figure 1. Contraction inhibition by BDM.  0.5 x 106 COS-7 cells in 0.5 mL collagen gel lattice were 
cultured for two days.  Before initiation of contraction, cells were pretreated with 10 mM BDM for 1 
hr.  The change of gel size (diameter) in millimeters was measured with a ruler at various times after 
release. 
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These products are warranted to perform as described in their labeling and in Cell Biolabs literature when used in 
accordance with their instructions.  THERE ARE NO WARRANTIES THAT EXTEND BEYOND THIS EXPRESSED 
WARRANTY AND CELL BIOLABS DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR 
WARRANTY OF FITNESS FOR PARTICULAR PURPOSE.  CELL BIOLABS’ sole obligation and purchaser’s 
exclusive remedy for breach of this warranty shall be, at the option of CELL BIOLABS, to repair or replace the products. 
In no event shall CELL BIOLABS be liable for any proximate, incidental or consequential damages in connection with the 
products. 
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