Revision date: 27/Feb/2019

Human Lactate Dehydrogenase C (LDHC) ELISA Kit

Catalog No.: abx251493

Size: 96T

Range: 1.56 ng/ml - 100 ng/ml

Sensitivity: 0.94 ng/ml

Storage: Store the 96-well plate, Standards, HRP-conjugate reagent and Biotin-conjugated antibody at -20°C, and the rest of the kit components at 4°C for up to 6 months.

Application: For quantitative detection of LDHC in Human Serum, Plasma, Tissue Homogenates, Cell Lysates, Cell Culture Supernatants and other biological fluids.

Introduction: Lactate dehydrogenase C (LDHC, also referred to as LDH3 and Cancer/Testis antigen 32 CT32) is an enzyme that catalyses the conversion of lactate to pyruvate, while adding hydrogen to NAD+ to form NADH, and creating an additional H+ ion. LDHC is predominantly expressed in the testes, and is thought to be involved in sperm motility. Different splice variants of LDHC are involved in the respiration processes of human tumours, and is commonly found in the seminal plasma of men with obstructive and non-obstructive azoospermia.

Principle of the Assay

This kit is based on sandwich enzyme-linked immuno-sorbent assay technology. An antibody specific to LDHC is pre-coated onto a 96-well plate. The standards and samples are added to the wells, incubated and washed with wash buffer. A biotin conjugated antibody specific to LDHC is used for detection. TMB substrate is used to visualize HRP activity. TMB is catalyzed by HRP to produce a blue colour product that changes into yellow after adding stop solution. The intensity of the color yellow is proportional to the LDHC amount bound on the plate. The O.D. absorbance is measured spectrophotometrically at 450 nm in a microplate reader, and then the concentration of LDHC can be calculated.

Kit components

- 1. One pre-coated 96-well microplate (12 × 8 well strips)
- 2. Standard: 2 tubes
- 3. Sample/Standard Diluent Buffer: 20 ml
- 4. Biotin conjugated antibody (Dilution 1:100): 120 μl
- 5. Antibody diluent buffer: 12 ml
- 6. HRP Conjugate Reagent (Dilution 1:100): 120 μl
- 7. HRP diluent buffer: 12 ml8. TMB substrate: 10 ml9. Stop solution: 10 ml
- 10. Wash buffer (25X): 30 ml
- 11. Plate Sealer: 5

Material Required But Not Provided

- 1. 37°C incubator
- 2. Microplate reader (wavelength: 450 nm)
- 3. Multi and single channel pipettes and sterile pipette tips
- 4. Squirt bottle or automated microplate washer
- 5. ELISA shaker
- 6. 1.5 ml tubes to prepare standard/sample dilutions
- 7. Absorbent filter papers
- 8. 100 ml and 1 liter graduated cylinders

Revision date: 27/Feb/2019

Protocol

A. Preparation of sample and reagents

1. Sample

Store samples to be assayed within 24 hours at 2-8°C. Alternatively, aliquot and store at -20°C or -80°C for long term. Avoid repeated freeze-thaw cycles.

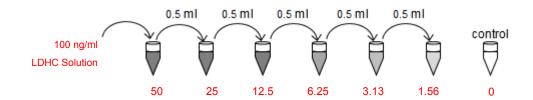
- Serum: Samples should be collected into a serum separator tube. Coagulate the serum by leaving the tube undisturbed in a vertical position overnight at 4°C or at room temperature for up to 60 minutes. Centrifuge at approximately 1000 × g for 15 min. Analyze the serum immediately or aliquot and store at -20°C or -80°C.
- Plasma: Collect plasma using heparin or EDTA as an anticoagulant. Centrifuge for 15 minutes at 1000 x g within 30 minutes of collection. Assay immediately or aliquot and store at -20°C. Avoid hemolysis and high cholesterol samples.
- **Tissue homogenates:** The preparation of tissue homogenates will vary depending upon tissue type this is just an example. Rinse tissues with ice-cold PBS to remove the excess of blood. Weigh before homogenization. Finely mince tissues and homogenize with a tissue homogenizer on ice in PBS and sonicate the cell suspension. Centrifuge the homogenates at 5000 × g for 5 min and collect the supernatant. Assay immediately or aliquot and store at -20°C.
- Cell lysates: Detach adherent cells with trypsin and collect by centrifugation and remove the supernatant. Wash the cells three times in ice-cold PBS and re-suspend cells in PBS. Lyse the cells by ultra-sonification 4 times or freeze at -20°C and thaw to room temperature 3 times. Centrifuge at 1500 × g for 10 min at 2-8°C to remove cellular debris. Collect the supernatant and assay immediately.
- Cell culture supernatant: Centrifuge at approximately 2000-3000 × g for 20 min to remove precipitant. Analyze immediately or aliquot and store at -20°C or -80°C.
- Other biological fluids: Centrifuge at approximately 1000 × g for 20 min to remove precipitant. Analyze immediately or aliquot and store at -20°C or -80°C.

Note:

- » Fresh samples or recently obtained samples are recommended to prevent degradation and denaturalization that may lead to erroneous results. It is recommended to store samples to be used within 5 days at 4°C, within 1 month at -20°C and within 2 months at -80°C.
- » Samples should be clear and transparent. Samples must be diluted so that the expected concentration falls within the kit's range.
- » Please bring sample slowly to room temperature. Sample hemolysis will influence the result. Hemolyzed specimen should not be used. Samples that contain NaN₃ cannot be detected as it interferes with HRP.
- » Always use non-pyrogenic, endotoxin-free tubes for blood collection.

2. Wash buffer

Dilute the concentrated Wash buffer 25-fold (1/25) with distilled water (i.e. add 30 ml of concentrated wash buffer into 720 ml of distilled water).


3. Standard

Preparation of the LDHC standard: standard solution should be prepared no more than 15 min prior to the experiment. Centrifuge at 10,000×g for 1 minute as the powder may drop off from the cap when opening. (Note: Do not dilute the standard directly in the plate). Once your standard has been reconstituted, it should be used right away. We do not recommend reusing the reconstituted standard.

- a.) 100 ng/ml standard solution. Add 1 ml of Sample/Standard diluent buffer into one Standard tube. Allow the reconstituted standard to sit for 15 minutes with gentle agitation prior to carrying out the serial dilutions; avoiding foaming or bubbles.
- b.) 50 ng/ml → 1.5625 ng/ml standard solutions: Label 6 tubes with 50 ng/ml, 25 ng/ml, 12.5 ng/ml, 6.25 ng/ml, 3.125 ng/ml and 1.5625 ng/ml. Aliquot 0.5 ml of the Sample / Standard diluent buffer into each tube. Add 0.5 ml of the above 100 ng/ml standard solution into 1st tube and mix thoroughly. Transfer 0.5 ml from 1st tube to 2nd tube and mix thoroughly. Transfer 0.5 ml from 2nd tube to 3rd tube and mix thoroughly, and so on.

Revision date: 27/Feb/2019

Note: Do not vortex the standard during reconstitution, as this will destabilize the protein. Once your standard has been reconstituted, it should be used right away. We do not recommend reusing the reconstituted standard. Please use the diluted Standards for a single assay procedure and discard after use.

- 4. Preparation of Biotin conjugated antibody working solution: prepare no more than 1 hour before the experiment.
- a.) Calculate the total volume of the working solution: 0.1 ml / well × quantity of wells. (Allow 0.1-0.2 ml more than the total volume).
- b.) Dilute the Biotin conjugated antibody with antibody diluent buffer at 1/100 and mix thoroughly. i.e. Add 1 µl of Biotin conjugated antibody into 99 µl of antibody diluent buffer. Discard after use.
- 5. Preparation of HRP Conjugated Reagent working solution: prepare no more than 30 min. before the experiment
- a.) Calculate the total volume of the working solution: 0.1 ml / well × quantity of wells. (Allow 0.1-0.2 ml more than the total volume).
- b.) Dilute the HRP Conjugate Reagent with HRP diluent buffer at 1/100 and mix thoroughly. i.e. Add 1 µl of HRP Conjugate Reagent into 99 µl of HRP diluent buffer. Discard after use.

B. Assay Procedure

Equilibrate the kit components and samples to room temperature before use. It is recommended to plot a standard curve for each test.

- 1. Set standard, test sample and control (zero) wells on the pre-coated plate and record their positions. It is recommended to measure each standard and sample in duplicate. Add the solution at the bottom of each well without touching the side walls.
- 2. Add 100 µl of the prepared standards solutions into the standard wells.
- 3. Add 100 µl of Sample / Standard diluent buffer into the control (zero) well.
- 4. Add 100 µl of appropriately diluted sample into test sample wells.
- 5. Cover the plate and incubate at 37°C for 90 minutes.
- Remove the cover and discard the liquid. Do not wash.
- 7. Add 100 µl of prepared Biotin conjugated antibody working solution into each well (standard, test sample and zero well). Add the solution at the bottom of each well without touching the side walls. Seal the plate with a cover and incubate at 37°C for 60 minutes.
- 8. Remove the cover and discard the solution. Wash the plate 3 times with 1X Wash Buffer. Fill each well completely with Wash buffer (350µL) using a multi-channel Pipette or autowasher (1-2 minute soaking period is recommended). Complete removal of liquid at each step is essential for good performance. After the final wash, remove any remaining Wash Buffer by aspirating or decanting. Invert the plate and blot it against clean absorbent paper towels.
- 9. Add 100 µl of HRP working solution into each well, cover the plate and incubate at 37°C for 30 minutes.
- 10. Remove the cover, discard the liquid and wash the plate 5 times with Wash Buffer as explained in step 8.

Revision date: 27/Feb/2019

abbexa 🍮

11. Add 90 µl of TMB substrate into each well. Cover the plate and incubate at 37°C in dark conditions for 15-20 minutes (incubation time is for reference only, do not exceed 30 minutes). When an apparent gradient appears in the standard wells the reaction can

be terminated.

12. Add 50 µl of Stop solution into each well. There should be a color change to yellow. Gently tap the plate to ensure thorough

mixing.

13. Ensure that there are no fingerprints or water on the bottom of the plate, and that the fluid in the wells is free of bubbles. Measure

the absorbance at 450 nm immediately.

For calculation, (the relative O.D.450) = (the O.D.450 of each well) - (the O.D.450 of Zero well). The standard curve can be plotted as the relative O.D.450 of each standard solution (Y) vs. the respective concentration of the standard solution (X). Log-log curve fitting is

recommended for data analysis. The Human LDHC concentration of the samples can be interpolated from the standard curve.

Note: If the samples measured were diluted, multiply the dilution factor by the concentrations from interpolation to obtain the

concentration before dilution.

C. Precautions

1. Equilibrate all reagents to room temperature (18-25°C) prior to use and centrifuge the tubes briefly in case any contents are

trapped in the lid.

2. For each step in the procedure, total dispensing time for addition of reagents to the assay plate should not exceed 10 minutes.

3. Wash buffer may crystallize and separate. If this happens, please warm the tube and mix gently to dissolve.

Avoid foaming or bubbles when mixing or reconstituting components.

5. It is recommended to assay all standards, controls and samples in duplicate or triplicate.

Do NOT let the plate dry out completely during the assay as this will inactivate the biological material on the plate.

Ensure plates are properly sealed or covered during incubation steps. 7.

Complete removal of all solutions and buffers during wash steps is necessary for accurate measurement readings. 8.

To avoid cross contamination do not reuse pipette tips and tubes.

10. Do not use components from a different kit or expired ones.

11. The TMB Substrate solution is easily contaminated; work under sterile conditions when handling the TMB substrate solution. The

TMB Substrate solution should also be protected from light. Unreacted substrate should be colorless or very light yellow in

appearance. Aspirate the dosage needed with sterilized tips and do not dump the residual solution back into the vial.

D. Precision

Intra-assay Precision (Precision within an assay): 3 samples with low, medium and high levels of LDHC were tested 20 times on one

plate, respectively.

Inter-assay Precision (Precision between assays): 3 samples with low, medium and high levels of LDHC were tested on 3 different

plates, 8 replicates in each plate.

CV (%) = (Standard Deviation / mean) × 100

Intra-Assay: CV<10%

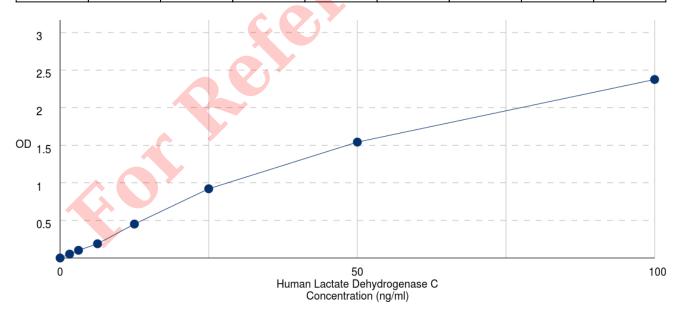
Abbexa Ltd, Cambridge, UK · Phone: +44 1223 755950 · Fax: +44 1223 755951 Abbexa LLC, Houston, TX, USA · Phone/Fax: +1 832 327 7413

Revision date: 27/Feb/2019

Inter-Assay: CV<10%

Sample Recovery (after spiking)

Sample Type	Range	Average Recovery	
Serum (n=5)	86-99%	93%	
EDTA Plasma (n=5)	93-106%	98%	


Linearity

Sample Type	1:2	1:4	1:8	1:16
Serum (n=5)	95-106%	98-114%	95-107%	97-113%
EDTA Plasma (n=5)	88-99%	88-101%	83-97%	84-96%

E. Typical Data & Standard Curve

Typical Standard Curve Data provided for demonstration purposes only. A new standard curve must be generated for each assay performed.

Concentration	0	1.5625	3.125	6.25	12.5	25	50	100
ng/ml				AU				
OD450	0	0.052	0.102	0.189	0.451	0.921	1.542	2.375

