Hrk Antibody

SIG-3771

Background

Apoptosis plays a major role in normal organism development, tissue homeostasis, and removal of damaged cells. Hrk, a pro-apoptotic member of the Bcl-2 homology domain-3 (BH3)-only group of the Bcl-2 family of proteins, was also identified as novel protein induced during programmed neuronal death. It lacks significant homology to other Bcl-2 family members except for an 8-amino acid region that is similar to the BH3 motif of Bik. Hrk regulates apoptosis through interaction with the anti-apoptotic proteins Bcl-2 and Bcl-XL via this domain. It does not interact with the proapoptotic proteins Bax, Bak, or Bcl-XS. Hrk localizes to mitochondrial membranes in a pattern similar to that previously reported for Bcl-2 and Bcl-XL. Despite its predicted molecular weight, Hrk often migrates at 12-15 kDa.

Additional Names

Hrk, Harakiri, Neuronal death proteinDP

Source

HRK antibody was raised against a 15 amino acid peptide from near the center of human Hrk.

Purification

Affinity chromatography purified via peptide column

Clonality / Clone

This is a polyclonal antibody.

Host

Hrk antibody was raised in rabbit.

Please use anti-rabbit secondary antibodies.

Application

Hrk antibody can be used for the detection of Hrk by Western blot at 2.5 - 5 μ g/ml.

Tested Application

E, WB

Buffer

Antibody is supplied in PBS containing 0.02% sodium azide.

Blocking Peptide

Hrk Peptide (contact Zyagen for availability)

Storage

Hrk antibody can be stored at 4°C, stable for one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures.

Positive Control

Mouse Pancreas Tissue Lysate (contact Zyagen for availability)

Species Reactivity

Η, Μ

Protein GI Number

4504493

Protein Accession Number

NP_003797

Short Description

a Bcl-2 family member involved durring programmed neuronal death

References

- 1. Lockshin RA, Osborne B, and Zakeri Z. Cell death in the third millennium. Cell Death Differ. 2000; 7:2-7.
- 2. Imaizumi K, Tsuda M, Imai Y, et al. Molecular cloning of a novel polypeptide, DP5, induced during programmed neuronal death. *J. Biol. Chem.* 1997; 272:18842-8.
- Inohara N, Ding L, Chen S, et al. harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-XL. *EMBO J.* 1997; 16:1686-94.