Item no. |
AAH-ANG-1-4 |
Manufacturer |
Raybiotech
|
Amount |
4 Sample Kit |
Quantity options |
2 Sample Kit
4 Sample Kit
8 Sample Kit
|
Category |
|
Type |
Array |
Specific against |
Human |
Host |
Hamster - Armenian |
Citations |
1. Piwnica D, Touraine P, Struman I, Tabruyn S, et al. Cathepsin D Processes Human Prolactin into Multiple 16K-Like N-Terminal Fragments: Study of their Antiangiogenic Properties and Physiological Relevance. Mol Endocrinol. 2004, 18(10):2522-2542.2. Sze S, Kleijn D, Lai R, Tan E, Zhao H,et al.Elucidating the Secretion Proteome of Human Embryonic Stem Cell-derived Mesenchymal Stem Cells.Mol Cell Proteomics. 2007, 6: 1680-16923. Goldstein LJ, Chen H, Bauer RJ, Bauer SM, Velazquez OC. Normal human fibroblasts enable melanoma cells to induce angiogenesis in type I collagen. Surgery. 2005, 138:439-449.4. Ebihara N, Yamagami S, Yokoo S, Amano S, Murakami A. Involvement of C-C Chemokine Ligand 2-CCR2 Interaction in Monocyte-Lineage Cell Recruitment of Normal Human Corneal Stroma. J Immunol. 2007,178:3288-3292.5. Nedeau A, Bauer R, Gallagher K, Chen H, Liu Z, et al. A CXCL5- and bFGF-dependent effect of PDGF-B-activated fibroblasts in promoting trafficking and differentiation of bone marrow-derived mesenchymal stem cells. Exp Cell Res. 2008,314:2176–2186.6. Lukešova S, Kopecký O, Vroblova V, Hlavkova D, Andrýs C. Determination of Angiogenic Factors in Serum by Protein Array in Patients with Renal Cell Carcinoma. Folia Biologica (Praha). 2008,54:134–140. 7. Fosbrink M, Niculescu F, Rus V, Shin ML, Rus H. C5b-9-induced Endothelial Cell Proliferation and Migration Are Dependent on Akt Inactivation of Forkhead Transcription Factor FOXO1. J Biol Chem. 2006, 281(28):19009-19018.8. McLachlan E, Shao Q, Wang H, Langlois S, Laird DW. Connexins Act as Tumor Suppressors in Three-dimensional Mammary Cell Organoids by Regulating Differentiation and Angiogenesis. Cancer Res. 2006, 66(20):9886-9894.9. Giorgini s, Trisciuoglio D, Gabellini C, Desideri M, et al. Modulation of bcl-xL in Tumor Cells Regulates Angiogenesis through CXCL8 Expression. Mol Cancer Res. 2007, 5(8):761-767.10. De Boeck A., et al. Differential secretome analysis of cancer-associated fibroblasts and bone marrow-derived precursors to identify microenvironmental regulators of colon cancer progression. Proteomics. 2013 Jan,13(2):379-88. doi: 10.1002/pmic.201200179. Epub 2013 Jan 6.11. Moon MH, Kim SY, Kim YJ, Kim SJ, et al. Human Adipose Tissue-Derived Mesenchymal Stem Cells Improve Postnatal Neovascularization in a Mouse Model of Hindlimb Ischemia. Cell Physiol Biochem. 2006, 17:279-290.12. De Boeck A., et al. Differential secretome analysis of cancer-associated fibroblasts and bone marrow-derived precursors to identify microenvironmental regulators of colon cancer progression. Proteomics. 2013 Jan,13(2):379-88. doi: 10.1002/pmic.201200179. Epub 2013 Jan 6.13. Tang Y, Nakada MT, Kesevan P, McCabe F, et al. Extracellular Matrix Metalloproteinase Inducer Stimulates Tumor Angiogenesis by Elevating Vascular Endothelial Cell Growth Factor and Matrix Metalloproteinases. Cancer Res. 2005,65(8):3193-3199.14. Wang D, Wang H, Brown J, Daikoku T, Ning W,et al.CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med. 2006, 203:941-951 15. Simcock DE, Kanabar V, Clarke GW, O'Connor BJ, Lee TH, and Hirst SJ. Proangiogenic Activity in Bronchoalveolar Lavage from Patients with Asthma. Am J Respir Crit Care Med 2007, 176(2): 146-153.16. Santo S., Seiler S., Fuchs A. ,Staudigl J., Widmer H. The Secretome of Endothelial Progenitor Cells Promotes Brain Endothelial Cell Activity through PI3-Kinase and MAP-Kinase. PLOSOne, Published: April 22, 2014, DOI: 10.1371/journal.pone.0095731 [Epub ahead of Print] 17. Raghu H., Lakka S., Gondi C., Mohanam S., et al. Suppression of uPA and uPAR Attenuates Angiogenin Mediated Angiogenesis in Endothelial and Glioblastoma Cell Lines. PLOS One, Published: August 27, 2010. DOI: 10.1371/journal.pone.001245818. Gorantla B., Asuthkar S., Rao J., Patel J., et al. Suppression of the uPAR–uPA System Retards Angiogenesis, Invasion, and In Vivo Tumor Development in Pancreatic Cancer Cells. Molecular Cancer Research. April 2011 9, 377 19. Ash S., et al. Xenon decreases cell migration and secretion of a pro-angiogenesis factor in breast adenocarcinoma cells: comparison with sevoflurane. Br. J. Anaesth. (2014) doi: 10.1093/bja/aeu191 20. Zaytseva Y., et al. Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer. Carcinogenesis vol.35 no.6 pp.1341–1351, 2014. doi:10.1093/carcin/bgu04221. O'Toole A., et al. Tumour microenvironment of both early- and late-stage colorectal cancer is equally immunosuppressive. British Journal of Cancer (2014), 1–6 | doi: 10.1038/bjc.2014.367 |
ECLASS 10.1 |
32161000 |
ECLASS 11.0 |
32161000 |
UNSPSC |
41116126 |
Similar products |
EGF, bFGF, IFN-gamma, IL-6, Leptin, PLGF, TIMP-1, IL-8, IL-6, VEGF-A, IGF-1, RANTES, MCP-1, ENA-78, TIMP-2, PDGF-BB, GRO, VEGF-D, TGF beta 1, Thrombopoietin, Angiogenin |
Available |
|
Short description |
RayBio C-Series Human Angiogenesis Antibody Array 1 Kit. Detects 20 Human Angiogenic Factors. Suitable for all liquid sample types. |
Features |
- Easy to use
- No specialized equipment needed
- Compatible with nearly any liquid sample
- Proven technology (many publications)
- Highly sensitive (pg/ml)
- Sandwich ELISA specificity
- Higher density than ELISA, Western blot or bead-based multiplex
|
Number of Targets Detected |
20 |
Target Names |
Angiogenin, EGF, ENA-78 (CXCL5), bFGF, GRO alpha/beta/gamma, IFN-gamma, IGF-1, IL-6, IL-8 (CXCL8), Leptin, MCP-1 (CCL2), PDGF-BB, PLGF, RANTES (CCL5), TGF beta 1, TIMP-1, TIMP-2, Thrombopoietin (TPO), VEGF-A, VEGF-D |
Targets Detected |
Angiogenin, bFGF, CCL2, CCL5, CXCL5, CXCL8, EGF, ENA-78, GRO, IFN-gamma, IGF-1, IL-6, IL-8, Leptin, MCP-1, PDGF-BB, PlGF, RANTES, TGF beta 1, Thrombopoietin, TIMP-1, TIMP-2, TPO, VEGF-A, VEGF-D |
Suggested Applications |
Multiplexed Protein Detection, Detection of Relative Protein Expression, Detecting Patterns of Cytokine Expression, Biomarker/ Key Factor Screening, Identifying Key Factors, Confirming a Biological Process |
Kit Components |
- Human Angiogenesis Antibody Array C1 Membranes
- Blocking Buffer
- Wash Buffer 1
- Wash Buffer 2
- Biotinylated Detection Antibody Cocktail
- Streptavidin-Conjugated HRP
- Detection Buffer C
- Detection Buffer D
- Lysis Buffer
- 8-Well Incubation Tray
- Plastic Sheets
- Array Templates
- Manual
|
Other Materials Required |
- Pipettors, pipet tips and other common lab consumables
- Orbital shaker or oscillating rocker
- Tissue Paper, blotting paper or chromatography paper
- Adhesive tape or Saran Wrap
- Distilled or de-ionized water
- A chemiluminescent blot documentation system (such as UVPs ChemiDoc-It or EpiChem II Benchtop Darkroom), X-ray Film and a suitable film processor, or another chemiluminescent detection system.
|
Protocol Outline |
- Block membranes
- Incubate with Sample
- Incubate with Biotinylated Detection Antibody Cocktail
- Incubate with HRP-Conjugated Streptavidin
- Incubate with Detection Buffers
- Image with chemiluminescent imaging system
- Perform densitometry and analysis
|
Storage |
For best results, store the entire kit frozen at -20C upon arrival. Stored frozen, the kit will be stable for at least 6 months which is the duration of the product warranty period. Once thawed, store array membranes and 1X Blocking Buffer at -20C and all other reagents undiluted at 4C for no more than 3 months. |
Solid Support |
Membrane |
Design Principle |
Sandwich-based |
Result Output |
Semi-Quantitative |
Detection Method |
Chemiluminescence |
Compatible Sample Types |
Cell Culture Supernatants, Plasma, Serum, Tissue Lysates, Cell Lysates |
Citation |
- 1. Piwnica D, Touraine P, Struman I, Tabruyn S, et al. Cathepsin D Processes Human Prolactin into Multiple 16K-Like N-Terminal Fragments: Study of their Antiangiogenic Properties and Physiological Relevance. Mol Endocrinol. 2004, 18(10):2522-2542.
- 2. Sze S, Kleijn D, Lai R, Tan E, Zhao H, et al.Elucidating the Secretion Proteome of Human Embryonic Stem Cell-derived Mesenchymal Stem Cells.Mol Cell Proteomics. 2007, 6: 1680-1692
- 3. Goldstein LJ, Chen H, Bauer RJ, Bauer SM, Velazquez OC. Normal human fibroblasts enable melanoma cells to induce angiogenesis in type I collagen. Surgery. 2005, 138:439-449.
- 4. Ebihara N, Yamagami S, Yokoo S, Amano S, Murakami A. Involvement of C-C Chemokine Ligand 2-CCR2 Interaction in Monocyte-Lineage Cell Recruitment of Normal Human Corneal Stroma. J Immunol. 2007, 178:3288-3292.
- 5. Nedeau A, Bauer R, Gallagher K, Chen H, Liu Z, et al. A CXCL5- and bFGF-dependent effect of PDGF-B-activated fibroblasts in promoting trafficking and differentiation of bone marrow-derived mesenchymal stem cells. Exp Cell Res. 2008, 314:2176–2186.
- 6. Lukešova S, Kopecký O, Vroblova V, Hlavkova D, Andrýs C. Determination of Angiogenic Factors in Serum by Protein Array in Patients with Renal Cell Carcinoma. Folia Biologica (Praha). 2008, 54:134–140.
- 7. Fosbrink M, Niculescu F, Rus V, Shin ML, Rus H. C5b-9-induced Endothelial Cell Proliferation and Migration Are Dependent on Akt Inactivation of Forkhead Transcription Factor FOXO1. J Biol Chem. 2006, 281(28):19009-19018.
- 8. McLachlan E, Shao Q, Wang H, Langlois S, Laird DW. Connexins Act as Tumor Suppressors in Three-dimensional Mammary Cell Organoids by Regulating Differentiation and Angiogenesis. Cancer Res. 2006, 66(20):9886-9894.
- 9. Giorgini s, Trisciuoglio D, Gabellini C, Desideri M, et al. Modulation of bcl-xL in Tumor Cells Regulates Angiogenesis through CXCL8 Expression. Mol Cancer Res. 2007, 5(8):761-767.
- 10. De Boeck A., et al. Differential secretome analysis of cancer-associated fibroblasts and bone marrow-derived precursors to identify microenvironmental regulators of colon cancer progression. Proteomics. 2013 Jan, 13(2):379-88. doi: 10.1002/pmic.201200179. Epub 2013 Jan 6.
- 11. Moon MH, Kim SY, Kim YJ, Kim SJ, et al. Human Adipose Tissue-Derived Mesenchymal Stem Cells Improve Postnatal Neovascularization in a Mouse Model of Hindlimb Ischemia. Cell Physiol Biochem. 2006, 17:279-290.
- 12. De Boeck A., et al. Differential secretome analysis of cancer-associated fibroblasts and bone marrow-derived precursors to identify microenvironmental regulators of colon cancer progression. Proteomics. 2013 Jan, 13(2):379-88. doi: 10.1002/pmic.201200179. Epub 2013 Jan 6.
- 13. Tang Y, Nakada MT, Kesevan P, McCabe F, et al. Extracellular Matrix Metalloproteinase Inducer Stimulates Tumor Angiogenesis by Elevating Vascular Endothelial Cell Growth Factor and Matrix Metalloproteinases. Cancer Res. 2005, 65(8):3193-3199.
- 14. Wang D, Wang H, Brown J, Daikoku T, Ning W, et al.CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med. 2006, 203:941-951
- 15. Simcock DE, Kanabar V, Clarke GW, O'Connor BJ, Lee TH, and Hirst SJ. Proangiogenic Activity in Bronchoalveolar Lavage from Patients with Asthma. Am J Respir Crit Care Med 2007, 176(2): 146-153.
- 16. Santo S., Seiler S., Fuchs A. , Staudigl J., Widmer H. The Secretome of Endothelial Progenitor Cells Promotes Brain Endothelial Cell Activity through PI3-Kinase and MAP-Kinase. PLOSOne, Published: April 22, 2014, DOI: 10.1371/journal.pone.0095731 [Epub ahead of Print]
- 17. Raghu H., Lakka S., Gondi C., Mohanam S., et al. Suppression of uPA and uPAR Attenuates Angiogenin Mediated Angiogenesis in Endothelial and Glioblastoma Cell Lines. PLOS One, Published: August 27, 2010. DOI: 10.1371/journal.pone.0012458
- 18. Gorantla B., Asuthkar S., Rao J., Patel J., et al. Suppression of the uPAR–uPA System Retards Angiogenesis, Invasion, and In Vivo Tumor Development in Pancreatic Cancer Cells. Molecular Cancer Research. April 2011 9, 377
- 19. Ash S., et al. Xenon decreases cell migration and secretion of a pro-angiogenesis factor in breast adenocarcinoma cells: comparison with sevoflurane. Br. J. Anaesth. (2014) doi: 10.1093/bja/aeu191
- 20. Zaytseva Y., et al. Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer. Carcinogenesis vol.35 no.6 pp.1341–1351, 2014. doi:10.1093/carcin/bgu042
- 21. O'Toole A., et al. Tumour microenvironment of both early- and late-stage colorectal cancer is equally immunosuppressive. British Journal of Cancer (2014), 1–6 | doi: 10.1038/bjc.2014.367
|