Vergleich

RapiClear® 1.49, 10 ml

ArtNr SUJI-RC149001
Hersteller SunJin Lab
Menge 10 ml
Quantity options 10 ml 100 ml
Kategorie
Typ Solution
Specific against other
Citations Biomaterial

1.Koh I, Hagiwara M. Modular tissue-in-a-CUBE platform to model blood-brain barrier (BBB) and brain interaction. Commun Biol (2024). https://doi.org/10.1038/s42003-024-05857-8

2.Guan S et al. Self-assembled ultraflexible probes for long-term neural recordings and neuromodulation. Nat Protoc (2023). https://doi.org/10.1038/s41596-023-00824-9

3.Dadashzadeh A et al. Mind the mechanical strength: tailoring a 3D matrix to encapsulate isolated human preantral follicles. Hum Reprod Open
(2023). https://doi.org/10.1093/hropen/hoad004

4.Gao L et al. Free-Standing Nanofilm Electrode Arrays for Long-Term Stable Neural Interfacings. Advanced Materials (2021). https://doi.org/10.1002/adma.202107343

5.Malakpour-Permlid A et al. A novel 3D polycaprolactone high-throughput system for evaluation of toxicity in normoxia and hypoxia. Toxicol Rep (2021). https://doi.org/10.1016/j.toxrep.2021.03.015

6.Malakpour-Permlid A et al. Identification of extracellular matrix proteins secreted by human dermal fibroblasts cultured in 3D electrospun scaffolds. Sci Rep (2021). https://doi.org/10.1038/s41598-021-85742-0
Human

1.Ribierre T, et al. Targeting pathological cells with senolytic drugs reduces seizures in neurodevelopmental mTOR-related epilepsy. Nat Neurosci (2024). https://doi.org/10.1038/s41593-024-01634-2

2.Tohgasaki T, et al. Thioredoxin promotes the regeneration and binding of elastic fibre and basement membrane. Int J Cosmet Sci (2024). https://doi.org/10.1111/ics.12964

3.Matschke J et al. Young COVID-19 Patients Show a Higher Degree of Microglial Activation When Compared to Controls. Front Neurol (2022). http://dx.doi.org/10.3389/fneur.2022.908081

4.Ouni E et al. Proteome-wide and matrisome-specific atlas of the human ovary computes fertility biomarker candidates and open the way for precision oncofertility. Matrix Biol (2022). http://dx.doi.org/10.1016/j.matbio.2022.03.005

5.Yokota M et al. Trehangelins ameliorate inflammation-induced skin senescence by suppressing the epidermal YAP-CCN1 axis. Sci Rep (2022). http://dx.doi.org/10.1038/s41598-022-04924-6

6.Tohgasaki T et al. Evaluation of elastin fibres in young and aged eyelids and abdominal skin using computational 3D structural analysis. Skin Health and Disease (2021). https://doi.org/10.1002/ski2.58

7.Blondy T et al. Involvement of the M-CSF/IL-34/CSF-1R pathway in malignant pleural mesothelioma. J Immunother Cancer (2020). http://dx.doi.org/10.1136/jitc-2019-000182

7.Hulsmans M et al. Macrophages Facilitate Electrical Conduction in the Heart. Cell (2017). http://dx.doi.org/10.1016/j.cell.2017.03.050
Organoids

1.Tran S, et al. BECLIN1 is essential for intestinal homeostasis involving autophagy-independent mechanisms through its function in endocytic trafficking. Commun Biol (2024). http://dx.doi.org/10.1038/s42003-024-05890-7

2.Krotenberg Garcia A, et al. Cell competition promotes metastatic intestinal cancer through a multistage process. iScience (2024). http://dx.doi.org/10.1016/j.isci.2024.109718

3.Argiro L, et al. Gastruloids are competent to specify both cardiac and skeletal muscle lineages. Nat Commun (2024). http://dx.doi.org/10.1038/s41467-024-54466-w

4.Hulo P, et al. Use of non-small cell lung cancer multicellular tumor spheroids to study the impact of chemotherapy. Respir Res (2024). http://dx.doi.org/10.1186/s12931-024-02791-5

5.Hansen SL et al. An organoid-based CRISPR-Cas9 screen for regulators of intestinal epithelial maturation and cell fate. Sci Adv (2023). http://dx.doi.org/10.1126/sciadv.adg4055

6.Shabani K et al. The temporal balance between self-renewal and differentiation of human neural stem cells requires the amyloid precursor protein. Sci Adv (2023). http://dx.doi.org/10.1126/sciadv.add5002

7.Lam MS et al. Unveiling the Influence of Tumor Microenvironment and Spatial Heterogeneity on Temozolomide Resistance in Glioblastoma Using an Advanced Human In Vitro Model of the Blood-Brain Barrier and Glioblastoma. Small (2023). http://dx.doi.org/10.1002/smll.202302280

8.Yu LY et al. Evaluating the biological effectiveness of boron neutron capture therapy by using microfluidics-based pancreatic tumor spheroids. Analyst (2023). http://dx.doi.org/10.1039/d2an01812h

9.Batalha S et al. Immune microenvironment dynamics of HER2 overexpressing breast cancer under dual anti-HER2 blockade. Front Immunol (2023). http://dx.doi.org/10.3389/fimmu.2023.1267621

10.Blondy T et al. Impact of RAFT chain transfer agents on the polymeric shell density of magneto-fluorescent nanoparticles and their cellular uptake. Nanoscale (2022). http://dx.doi.org/10.1039/d1nr06769a

11.Wan Z et al. New Strategy for Promoting Vascularization in Tumor Spheroids in a Microfluidic Assay. Adv Healthc Mater (2022). http://dx.doi.org/10.1002/adhm.202201784

12.Hörberg CJ et al. Spontaneous Cell Cluster Formation in Human iPSC-Derived Neuronal Spheroid Networks Influences Network Activity. eNeuro (2022). http://dx.doi.org/10.1523/ENEURO.0143-22.2022

13.Dalgin G et al. Developmental defects and impaired network excitability in a cerebral organoid model of KCNJ11 p.V59M-related neonatal diabetes. Sci Rep (2021). https://doi.org/10.1038/s41598-021-00939-7
Mouse

1.Wu CH, et al. Very Low-Intensity Ultrasound Facilitates Glymphatic Influx and Clearance via Modulation of the TRPV4-AQP4 Pathway. Adv Sci (2024). http://dx.doi.org/10.1002/advs.202401039

2.Kuang K, et al. Design and Discovery of New Collagen V-Derived FGF2-Blocking Natural Peptides Inhibiting Lung Squamous Cell Carcinoma In Vitro and In Vivo. J Med Chem (2024). http://dx.doi.org/10.1021/acs.jmedchem.4c00654

3.Ugur M et al. Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks. Immunity (2023). https://doi.org/10.1016/j.immuni.2023.06.020

4.Pereira da Costa M et al. Interplay between CXCR4 and CCR2 regulates bone marrow exit of dendritic cell progenitors. Cell Rep (2023). https://doi.org/10.1016/j.celrep.2023.112881

5.Honda A et al. Very-long-chain fatty acids are crucial to neuronal polarity by providing sphingolipids to lipid rafts. Cell Rep (2023). https://doi.org/10.1016/j.celrep.2023.113195

6.Hao B et al. Genes and pathways associated with fear discrimination identified by genome-wide DNA methylation and RNA-seq analyses in nucleus accumbens in mice. Prog Neuropsychopharmacol Biol Psychiatry (2023). https://doi.org/10.1016/j.pnpbp.2022.110643

7.Zhao P et al. Orexin A peptidergic system: comparative sleep behavior, morphology and population in brains between wild type and Alzheimer’s disease mice. Brain Struct Funct (2022). https://doi.org/10.1007/s00429-021-02447-w

8.Mostafavi H et al. Interleukin-17 contributes to Ross River virus-induced arthritis and myositis. PLoS Pathog (2022). https://doi.org/10.1371/journal.ppat.1010185

9.Pulous FE et al. Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. Nat Neurosci (2022). https://doi.org/10.1038/s41593-022-01060-2

10.McAlpine CS et al. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature (2021). https://doi.org/10.1038/s41586-021-03734-6

11.Wei S et al. Aberrant Wnt signalling induces comedo-like changes in the upper hair follicle. J Invest Dermatol (2021). https://doi.org/10.1016/j.jid.2021.11.034

12.Yu LS et al. Tissue Architecture Influences the Biological Effectiveness of Boron Neutron Capture Therapy in In Vitro/In Silico Three-Dimensional Self-Assembly Cell Models of Pancreatic Cancers. Cancers (Basel) (2021). https://doi.org/10.3390/cancers13164058

13.Zhang W et al. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell (2021). https://doi.org/10.1016/j.cell.2021.03.011

14.Ohtsuki G. Modification of synaptic-input clustering by intrinsic excitability plasticity on cerebellar Purkinje cell dendrites. J Neurosci (2019). https://doi.org/10.1523/JNEUROSCI.3211-18.2019

15.Liau ES et al. Visualization of Motor Axon Navigation and Quantification of Axon Arborization In Mouse Embryos Using Light Sheet Fluorescence Microscopy. J Vis Exp (2018). http://dx.doi.org/10.3791/57546

16.Vinegoni C et al. Real-time high dynamic range laser scanning microscopy. Nat Commun (2016). http://dx.doi.org/10.1038/ncomms11077

17.Kwak, H et al. Sinusoidal ephrin receptor EPHB4 controls hematopoietic progenitor cell mobilization from bone marrow. J Clin Invest (2016). http://dx.doi.org/10.1172/JCI87848
Arthropods

1.Zhang R, et al. Targeted deletion of olfactory receptors in D. melanogaster via CRISPR/Cas9-mediated LexA knock-in. J Neurogenet (2024). http://dx.doi.org/10.1080/01677063.2024.2426014

2.Arango CP, Brenneis G. Epimorphic development in tropical shallow-water Nymphonidae (Arthropoda: Pycnogonida) revealed by fluorescence imaging. Zoological Lett (2024). http://dx.doi.org/10.1186/s40851-023-00223-8

3.Corthals K et al. Genetic atlas of hygro-and thermosensory cells in the vinegar fly Drosophila melanogaster. Sci Rep (2023). http://dx.doi.org/10.1038/s41598-023-42506-2

4.Klußmann-Fricke BJ et al. The basement membrane controls size and integrity of the Drosophila tracheal tubes. Cell Rep (2022). http://dx.doi.org/10.1016/j.celrep.2022.1107342

5.Bekkouche B et al. Modeling Nonlinear Dendritic Processing of Facilitation in a Dragonfly Target-Tracking Neuron. Front Neural Circuits (2021). http://dx.doi.org/10.3389/fncir.2021.684872

6.Bekkouche B et al. Comparison of Transparency and Shrinkage During Clearing of Insect Brains Using Media With Tunable Refractive Index. Front Neuroanat. (2020).http://dx.doi.org/10.3389/fnana.2020.599282
Zebrafish

1.Diego PD et al. Quantitative Approaches to Study Retinal Neurogenesis. Biomedicines (2021). https://doi.org/10.3390/biomedicines9091222
Tadpoles

1.Long J et al. Cereblon influences the timing of muscle differentiation in Ciona tadpoles. Proc Natl Acad Sci U S A (2023). https://doi.org/10.1073/pnas.2309989120

2.Henriet E et al. Monitoring recovery after CNS demyelination, a novel tool to de-risk pro-remyelinating strategies. Brain (2023). https://doi.org/10.1093/brain/awad051
Lizard

1.Pranter R, Feiner N. Spatiotemporal distribution of neural crest cells in the common wall lizard Podarcis muralis. Dev Dyn (2024). http://dx.doi.org/10.1002/dvdy.758
Tunicate

1.Todorov LG, et al. Neural crest lineage in the protovertebrate model Ciona. Nature (2024). https://dx.doi.org/10.1038/s41586-024-08111-7
ECLASS 10.1 32120508
ECLASS 11.0 32120508
UNSPSC 12000000
Lieferbar

Hinweis: Die dargestellten Informationen und Dokumente (Bedienungsanleitung, Produktdatenblatt, Sicherheitsdatenblatt und Analysezertifikat) entsprechen unserem letzten Update und sollten lediglich der Orientierung dienen. Wir übernehmen keine Garantie für die Aktualität. Für spezifische Anforderungen bitten wir Sie, uns eine Anfrage zu stellen.

Alle Produkte sind nur für Forschungszwecke bestimmt. Nicht für den menschlichen, tierärztlichen oder therapeutischen Gebrauch.

Menge: 10 ml
Lieferbar: In stock
lieferbar

Vergleichen

Auf den Wunschzettel

Angebot anfordern

Lieferzeit anfragen

Technische Frage stellen

Bulk-Anfrage stellen

Fragen zum Produkt?